Approximation and compression of scattered data by meshless multiscale decompositions
نویسندگان
چکیده
A class of multiscale decompositions for scattered discrete data is introduced, motivated by sensor network applications. A specific feature of these decompositions is that they do not rely on any type of mesh or connectivity between the data points. The decomposition is based on a thinning procedure that organizes the points in a multiscale hierarchy and on a local prediction operator based on least-square polynomial fitting. We prove that the resulting multiscale coefficients obey the same decay properties as classical wavelet coefficients when the analyzed function has some local smoothness properties. This yields compression capabilities that we illustrate by numerical experiments.
منابع مشابه
Three dimensional static and dynamic analysis of thick plates by the meshless local Petrov-Galerkin (MLPG) method under different loading conditions
In this paper, three dimensional (3D) static and dynamic analysis of thick plates based on the Meshless Local Petrov-Galerkin (MLPG) is presented. Using the kinematics of a three-dimensional continuum, the local weak form of the equilibrium equations is derived. A weak formulation for the set of governing equations is transformed into local integral equations on local sub-domains by using a uni...
متن کاملMultiscale Support Vector Regression Method On Spheres with Data Compression
In this manuscript, we investigate the multiscale support vector regression (SVR) method with data compression for approximation of functions on the unit sphere. The data are obtained at scattered sites on the sphere and may contain noise. The Vapnik ε-intensive loss function, which has been well-developed in learning theory, is introduced to obtain a local regularized approximation at each ste...
متن کاملA meshless discrete Galerkin method for solving the universe evolution differential equations based on the moving least squares approximation
In terms of observational data, there are some problems in the standard Big Bang cosmological model. Inflation era, early accelerated phase of the evolution of the universe, can successfully solve these problems. The inflation epoch can be explained by scalar inflaton field. The evolution of this field is presented by a non-linear differential equation. This equation is considered in FLRW model...
متن کاملGeometric multiscale decompositions of dynamic low-rank matrices
The present paper is concerned with the study of manifold-valued multiscale transforms with a focus on the Stiefel manifold. For this specific geometry we derive several formulas and algorithms for the computation of geometric means which will later enable us to construct multiscale transforms of wavelet type. As an application we study compression of piecewise smooth families of low-rank matri...
متن کاملMultiscale kernels
This paper reconstructs multivariate functions from scattered data by a new multiscale technique. The reconstruction uses standard methods of interpolation by positive definite reproducing kernels in Hilbert spaces. But it adopts techniques from wavelet theory and shift–invariant spaces to construct a new class of kernels as multiscale superpositions of shifts and scales of a single compactly s...
متن کامل